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Abstract 
 

Autonomy is a key enabling factor in the advancement of the remote robotic exploration.  There is currently a large 
gap between autonomy software at the research level and software that is ready for insertion into near-term space 
missions.  The Mission Simulation Facility (MSF) will bridge this gap by providing a simulation framewo rk and 
suite of simulation tools to support research in autonomy for remote exploration. This system will allow developers 
of autonomy software to test their models in a high-fidelity simulation and evaluate their system’s performance 
against a set of integrated, standardized simulations.  
 
The Mission Simulation ToolKit (MST) uses a distributed architecture with a communication layer that is built on 
top of the standardized High Level Architecture (HLA). This architecture enables the use of existing high fidelity 
models, allows mixing simulation components from various computing platforms and enforces the use of a 
standardized high-level interface among components. The components needed to achieve a realistic simulation can 
be grouped into four categories: environment generation (terrain, environmental features), robotic platform behavior 
(robot dynamics), instrument models (camera/spectrometer/etc.), and data analysis. The MST will provide basic 
components in these areas but allows users to plug-in easily any refined model by means of a communication 
protocol. Finally, a description file defines the robot and environment parameters for easy configuration and ensures 
that all the simulation models share the same information. 
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INTRODUCTION 

Autonomy is a key enabling factor in the advancement 
of the remote robotic exploration.  Such systems will 
need to demonstrate high levels of autonomy and 
adaptability to accomplish their tasks without 
continuous human control or intervention (Washington 
et. al, 1999). 

In order to accelerate the development of this 
technology, NASA initiated the Intelligent Systems 
(IS) program managed out of the Ames Research 
Center.  In addition to sponsoring research in 
autonomous systems and algorithms, they also had the 
foresight to initiate the development of simulation 
resources, tools and facilities.   

Commercial software tools developed for industrial 
robot simulation have been available for years, but 
autonomous systems researchers have been unable to 
take advantage of these tools because they are not 
flexible enough to be able to represent newly designed 
robotic systems evolving in unstructured 
environments.  
The result has been that each research lab has had to 
develop its own simulator.  Because of the complexity 
and time required for their development, such 
simulators have usually been oriented towards “block-
world” models (answering most needs while keeping 
simplicity). These tools are useful for experimenting 
with robotic autonomy, but are not suitable for 
planetary missions due to their 2D world model and 
limited sensors.   

At the same time, sophisticated simulators have been 
developed within research laboratories to address 
specific problems such as robot dynamics (Yen, Jain, 
& Balaram, 1994) or instrument and environment 
modeling (Thompkins, 1999). These tools offer highly 
accurate models but are oriented towards engineering 
design or mission-ready simulation.  Consequently, 
even though many high fidelity models exist, they are 
difficult to combine into an integrated simulation. 
Typically these tools are tied to a specific operating 
system or comp uter language and are not designed for 
applications outside of their nominal scope.   
The Mission Simulation Facility (MSF) project was 
initiated to bridge this gap.  This will be achieved 
through the development of the Mission Simulation 

Toolkit (MST), a software package comprising 1) a 
framework for connecting and synchronizing 
distributed software models, 2) generic interfaces 
abstracted from the transport layer, and 3) a set of basic 
components required for a simulation. 

 
DEVELOPMENT GOALS 

 
We have established several goals that the Mission 
Simulation Toolkit must achieve: 
 
• Provide a software framework addressing 

multiple levels of autonomy simulation.  
• Allow easy integration of autonomy modules and 

tools into the simulation. 
• Be easily extensible to mult iple robotic platforms 

and environments.  
• Allow interchangeability of real hardware and 

simulated components. 
• Be easily distributable to external groups (NASA 

Sites, Educational, and Research Facilities). 
• Provide varying levels of simulation fidelity. 
 

SCOPE AND APPLICATIONS 
 

The MST architecture has been designed to support 
multiple mission platforms (e.g. planetary robots, 
spacecraft, underwater vehicles), with the initial focus 
on planetary rovers. 
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Figure 1. Overview of the Mission Simulation Toolkit  



The components needed for a rover simulation would 
include a terrain model, site information (such as 
coloration and mineral composition), an environment 
model (sun position, lighting, temperature, etc), and a 
rover including a kinematic model and on-board 
sensors, and several scientific instruments.  It is up to 
the user to decide what granularity of models best suits 
the purpose of his simulation.   
For example, a user who is concerned primarily with 
collecting scientific data may not require a 
sophisticated rover model because he may not care how 
the rover gets from one point of interest to another.  On 
the other hand, a user who is developing a trajectory 
generator may want to control the individual wheels of 
a rover.  For this reason the MST provides both high 
and low level interfaces to a number of standard 
models.   
This dual level interface is also needed to support a 
variety of robot architectures.  Since very different 
approaches currently exist, see (Coste-Maniere & 
Simmons, 2001) for examples, the MST must provide 
an interface generic enough to equally support 
hierarchical, behavioral or hybrid robot architectures.  
Figure 1 shows the concepts of the MST distributed 
simulation relying on a common communication 
framework to connect models and autonomy software. 
 

DISTRIBUTED ARCHITECTURE 
 

The MST architecture is derived from two main 
requirements:  to support distributed simulation on 
multiple platforms and to ensure extensibility through 
an open architecture. 
 

Multiple Platform Support 
 
Users of the MST (autonomy developers) typically 
develop their tools in a variety of environments, for 
example, a LISP program under Solaris on a Sun 
workstation or a C++ program under Linux on an Intel 
PC. Target systems for the autonomy software (the 
rover control software) may also be developed on 
different operating systems and hardware platforms.  
Such software could for instance rely on a particular 
flavor of Linux running on a PC-104 Pentium board, or 
could be a dedicated embedded system running 
VxWorks.  The MSF project does not intend to develop 
all the simulation components but rather will take 
advantage of existing tools.  To minimize the 
adaptation requirements, each particular software 
component should be usable by the MST on the original 
platform for which it was developed. 
 

Open Architecture 
 

The MST is a general-purpose testbed for mission 
simulation rather than a specific simulator, which 
implies that different sets of components will be used 
for different scenarios or different domains.  For 
instance, one might use a kinematics model for a rover 
and a fluid dynamics model for an underwater vehicle.  
In addition, a component should be usable in multiple 
scenarios, which means that the same rover kinematics 
model could be used for various rovers with particular 
payloads operating in different environments.  Finally, 
it should be possible to replace a component of a 
specific type with another that performs the same 
function but at a different level of fidelity.  A simple 
kinematics rover simulator could be adequate to test 
high-level autonomy concepts such as path planning, 
while a dynamics rover simulator including accurate 
soil-wheel interactions may be required to test an 
autonomous control system for the mobility of the 
rover.  It is therefore essential that the MSF define clear 
interfaces between the components to facilitate the 
exchange of components included in the MST with 
those developed at other research institutions. 

A way to satisfy the above requirements is to have a 
distributed architecture where components 
communicate with each other using a common transport 
layer.  The MST is built on top of the standardized High 
Level Architecture (HLA), which is an architecture for 
simulation reuse and inter-operability developed by the 
Defense Modeling and Simulation Office (DMSO). The 
MST currently uses the Runtime Infrastructure (RTI), a 
software implementation of HLA (Kuhl, Weatherly, & 
Dahmann, 2002) freely distributed by DMSO. The 
HLA/RTI provides the MST the following services:  

• Multi-platform support:  IRIX, Solaris, Linux, 
Win32 and VxWorks  

• C++ and Java bindings  
• Choice of transport protocol:  TCP (reliable) 

or UDP (fast)  
• Publish/Subscribe scheme  
• Communication through objects or messages  
• Various time management schemes for 

simulation synchronization  
 

To facilitate the integration of components in an 
MST-based simulation, an abstraction layer has been 
developed on top of the HLA, the Federate ToolKit 
(FTK). FTK is responsible for the integration of 
communication entities with the Runtime Infrastructure.  
The communication objects and messages defining the 
MST interface are easily designed using the Unified 
Modeling Language (UML). All the necessary C++ 
code to use these communication entities is generated 
automatically.
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Figure 2:  MST simulation showing several components communicating through common interfaces. 
 

 
Figure 2 provides an example of an MST-based 
simulation with several interconnected components.  
Two separate rover autonomy software executions are 
participating in the simulation:  The software in Rover 
A is provided by a lab having a complete rover 
architecture (and probably a real rover) from the high 
level control down to the hardware control; the software 
on Rover B comes from a lab working only on high 
level autonomous algorithms and without hardware 
control.  When the Rover A software sends commands 
to its actuators (e.g.  motor1_start(speed, duration)), the 
commands are routed to the simulator rather than to real 
hardware.  The kinematics simulator accepts such 
commands and computes the behavior of the rover on 
the terrain regarding these inputs.  When Rover B 
issues a high level command to its base controller (e.g. 
roverB_moveto (position, obstacle-avoidance=on)), the 
Generic Rover model catches this message and 
produces motor commands for a simple model of a 
rover, causing it to move from one location to another 
while avoiding obstacles.  These motor commands can 
be processed by the same kinematics simulator used to 
control Rover A. The same scheme is used when 
controlling instruments, generalized as sensors in 
Figure 2 (the figure does not show the full path of 
information flow). In addition to the Kinematics and 
Instruments models, a Power Resource model is 
participating in the simulation.  It monitors the load of 

each actuator as well as the power generated by solar 
panels and computes the power remaining in the rover’s 
batteries.  The power output of the solar panels depends 
on the orientation of the solar panels relative to the sun.  
The kinematics model provides the position of the 
panels and the sun’s position is delivered by another 
component computing the Ephemeris.  This example 
shows how different components are reusable for 
different scenarios, and how the definitions of the 
networked MST interfaces removes all the 
dependencies between the components. 
 

THE MISSION SIMULATION TOOLKIT 
 
A first prototype of the Mission Simulation ToolKit 
was demonstrated in June 2002.  It is being evaluated 
by autonomy researchers within NASA Ames and is 
being applied to the development of contingent plan 
execution.  Figure 3. shows the components and 
messages that make up this release.  The following 
paragraphs describe the software that are included in 
this internal release : 
 
Federate Tool Kit (FTK) 
 
The federate tool kit is a set of C++ classes forming a 
layer above HLA.  The FTK classes simplify much of 
the development overhead of HLA, which includes 
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Figure 3.  Components and messages of the June 2002 MST release.  

tasks such as joining and exiting, and managing 
attribute updates and attributes.  The FTK also 
maintains a local representation of the HLA simulation 
for each component.  The FTK objects have also been 
developed enforce proper behavior of components in 
the simulation:  They abstract the developer from 
operations and sequences in HLA that will ensure 
proper interaction with other federation objects and the 
federation as a whole.    
 
UML2HLA  
 
UML2HLA has been developed to map UML 
communications entities to an HLA implementation.  
UML2HLA has been implemented in the form of a 
Visual Basic plugin to Rational Rose that inputs a MST 
Communication Objects Hierarchy and provides two 
outputs.  The first is an HLA FED file that is used by 
HLA to describe the allowable objects in the simulation 
Federation.  The second is a C++ class library that can 
be used by a simulation developer to access those 
objects.   
 
These generalized classes are based on the FTK layer, 
allowing the communications objects to inherit the 
facilities for accessing the HLA transport layer 
provided by FTK. 

MST Communication Object Hierarchy 
 
The Communications Hierarchy is described in the 
form of UML (Unified Modeling Language) files.  The 
Communication Object Hierarchy describes a set of 
objects that will exist in the simulation, their attributes, 
and the communication messages that can be sent or 
received by each object.   
 
The Object Hierarchy is easily modified and expanded 
to support additional objects or messages using any 
UML tool.  The Object Hierarchy as currently designed 
is specialized for the simulation of Planetary Rovers, 
however it can and will be expanded to support other 
domains.   
 
The conceptual communications objects are 
implemented as a set of C++ classes using the 
UML2HLA Process. 
 
VIZ 
 
The inclusion of the VIZ program module allows the 
visualization of MST simulations.  VIZ supports the 
visualization of the terrain, the robot(s), and the output 
of sensors such as cameras.  VIZ also allows the 
simulation developer to assess the progress and 
operation of the robot using visual tools.  



 
 

Figure 4. An MST simulation involving two rovers on simulated Martian terrain as visualized in VIZ.   
 
The VIZ software was developed at NASA Ames.  The 
MST team has developed an HLA interface to VIZ that 
allows it to interact with MST simulation components.  
Figure 4 shows example output of the VIZ tool. 
 
Terrain 
 
The MST provides the capability of introducing terrain 
models (consisting of DEM and albido) into the 
simulation.  The MST supplies several models that 
were synthesized and generated by the JPL Super 
Computing Group based on Martian data models.  The 
MST also maintains the capability of introducing and 
using terrain data from measured (real) models.   
 
Models 
 
The MST currently provides models of systems and 
processes that are representative of planetary robotic 
systems.  These include a 3D robot model, power 
model, kinematic model, and robot movement 
generator.  The MST will be expanded to include 
additional models, including sensors and instruments 
(cameras, spectrometers), effectors (arms, booms) and 
other subsystems.   
 

USER GROUPS 
 
We are developing the MST to support two different 
user groups.  Our use of a component architecture 
should allow us to support both with minimal changes.   
 

The first group involves primarily internal NASA 
(Ames and JPL) researchers, including those that are 
involved in the IS Program.  This group is distinguished 
by their need to use components that may be export 
controlled or otherwise cannot be released outside of 
NASA.  These users would gain access to these 
components from internal sources.   
 
The second group includes users primarily external to 
NASA, which would include educational and other 
research institutions, including foreign groups.  These 
users would have access to a full range of components 
that will have been developed with distribution in mind.  
These components may have been developed internally 
or be contributed by users of the MST.  This group also 
includes foreign students and researchers that may be 
working within NASA.  These users would be using the 
MST to develop algorithms that don’t involve export-
controlled software.   
 

RELEASE STRATEGY 
 
The release of the MST will involve several 
distributions and capabilities over a nominal 3-year 
period.  The releases should be scheduled to correspond 
to the levels of capabilities and refinements to the MST 
architecture and code. 
 
The initial release of the MST will be to internal IS 
researchers (NASA Ames and JPL) and no more than 
three university groups.  This release will be used as a 
test of the robustness of the code and the distribution 



process.  We expect to learn a lot about how well we 
have documented the release and what things are 
missing or need to be added to the MST to help the 
user.  This release should be via a CD and is scheduled 
for Winter 2002.   
 
The second release will be to internal users and will be 
capable of linking in export-controlled components.  
This release is scheduled for Summer 2003.   
 
The third major release of the MST will include 
additional components and will be targeted at a larger 
group of external users.  These should include both US 
and foreign universities and research groups.  We 
expect that this version may involve the sharing and 
exchange of component modules between groups.  It is 
currently scheduled for Winter 2003.   
 
During 2004, we will work to develop an open source 
version of the MST, which may involve working with 
an external group that focuses on this process.  We 
expect that this version may also be licensable by 
commercial companies via the NASA Commercial 
Technology Office.  We also expect that this version 
may allow users to download the MST core architecture 
from an open source site and download other modules 
from the sites of other MST affiliates.  This release is 
nominally scheduled for Winter 2004. 

 
SUMMARY 

 
There is currently a large gap between autonomy 
software at the research level and software that is ready 
for mission insertion.  The Mission Simulation Facility 
will bridge this gap by providing a simulation 
framework and suite of simulation tools (the Mission 
Simulation ToolKit) to support research in autonomy 
for remote exploration. This system will allow 
developers of autonomy software to test their models in 
a high-fidelity simulation and evaluate their system’s 
performance against a set of integrated, standardized 
simulations.  
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